Book chapters

2020 – today

  • L. Gago, B. Remeseiro, L. Igual, A. Storkey, M.O. Bernabeu, J. Engelmann. Self-consistent Deep Approximation of Retinal Traits for Robust and Highly Efficient Vascular Phenotyping of Retinal Colour Fundus Images. Communications in Computer and Information Science: Medical Information Computing, MImA 2024 and EMERGE 2024 (Revised Selected Papers), vol. 2240, pp. 213-223, 2025. [DL]
  • B. Remeseiro, V. Bolón-Canedo. Case Studies to demonstrate Real-World Applications in Ophthalmic Image Analysis. Handbook of Artificial  Intelligence in Healthcare, Intelligent Systems Reference, vol. 211, pp. 83-125, 2022. [DL]
  • M.M. Vila, B. Remeseiro, M. Grau, R. Elousua, L. Igual. Last Advances on Automatic Carotid Artery Analysis in Ultrasound Images: Towards Deep Learning. Handbook of Artificial  Intelligence in Healthcare, Intelligent Systems Reference, vol. 211, pp. 215-247, 2022. [DL]

2010 – 2019

  • B. Remeseiro, N. Barreira, L. Sanchez-Brea, L. Ramos, A. Mosquera. Machine Learning Applied to Optometry Data. Advances in Biomedical Informatics, Intelligent Systems Reference Library, vol. 137, pp. 123-160, 2018. [DL]
  • Ana González, Beatriz Remeseiro, Marcos Ortega, Manuel G. Penedo, Pablo Charlón. A Texture-based Method for Choroid Segmentation in Retinal EDI-OCT Images. Lecture Notes in Computer Science: Computer Aided Systems Theory EUROCAST 2015 (Revised Selected Papers), vol. 9520, pp. 487-493, 2015. [DL]
  • V. Bolón-Canedo, B. Remeseiro, N. Sánchez-Maroño, A. Alonso-Betanzos. Real-Time Tear Film Classification Through Cost-Based Feature Selection. Lecture Notes in Computer Science: Transactions on Computational Collective Intelligence XX, vol. 9420, pp. 78-98, 2015. [DL]
  • B. Remeseiro, M. G. Penedo, C. García-Resúa, E. Yebra-Pimentel, A. Mosquera. Dry Eye Characterisation by Analysing Tear Film Images. Ophthalmology Imaging and Applications, Chapter 23, pp. 449-476, 2014. [DL]
  • A. González, B. Remeseiro, M. Ortega, M. G. Penedo, P. Charlón. Cyst detection in OCT images for pathology characterization. Ophthalmology Imaging and Applications, Chapter 17, pp. 315-332, 2014. [DL]
  • C. Mariño, M. Ortega, J. Novo, B. Remeseiro, A. Fernández, F. Gómez-Ulla. Automatic analysis of scanning laser ophthalmoscope sequences for arteriovenous passage time measurement. Ophthalmology Imaging and Applications, Chapter 13, pp. 221-236, 2014. [DL]
  • M.G. Penedo, B. Remeseiro, L. Ramos, N. Barreira, C. García-Resúa, E. Yebra-Pimentel, A. Mosquera. Automatization of Dry Eye Syndrome Tests. Image Analysis and Modeling in Ophthalmology, Chapter 16, pp. 293-320, 2014. [DL]
  • R. Méndez, B. Remeseiro, D. Peteiro-Barral, M. G. Penedo. Evaluation of class binarization and feature selection in tear film classification using TOPSIS. Communications in Computer and Information Science: Agents and Artificial Intelligence, vol. 449, pp. 179-193, 2014. [DL]
  • B. Remeseiro, L. Ramos, N. Barreira, A. Mosquera, E. Yebra-Pimentel. Colour Texture Segmentation of Tear Film Lipid Layer Images. Lecture Notes in Computer Science: Computer Aided Systems Theory EUROCAST 2013 (Revised Selected Papers), vol. 8112, pp. 140-147, 2013.[DL]

2000 – 2009

  • B. Remeseiro, N. Barreira, D. Calvo, M. Ortega, M. G. Penedo. Automatic drusen detection from digital retinal images: AMD prevention. Lecture Notes in Computer Science: Computer Aided Systems Theory EUROCAST 2009 (Revised Selected Papers), vol. 5717, pp. 187-194, 2009. [DL]